524/527/527B Super High Gain Log-Periodic Antennas

Maximize gain and bandwidth with an exceptionally small structure.

Highly reliable communications on long-range circuits require antennas with high power gain at low take-off angles. In addition, ionospheric variations resulting in frequent changes in frequency make a wide frequency bandwidth desirable. The conventional approach to achieve wide-band, highly directive antennas has been to use multiple rhombic antennas, which rely heavily on end-fire gain to achieve their directivity and hence are quite large. Typical installations exceed 300 meters in length and require large investments in land.

Log-periodic antennas have long been desired for their wide band characteristics, efficient land use, and modest price. Until recently, increasing the gain of a log periodic has been attempted through end-fire techniques. This approach results in very large structures, which are difficult to support and install.

Log-periodic antennas have long been desired for their wide band characteristics, efficient land use, and modest price. Until recently, increasing the gain of a log periodic has been attempted through end-fire techniques. This approach results in very large structures, which are difficult to support and install.

Small structures with very high gain are now possible using techniques developed at TCl employing broadside gain. Use of the clamped mode technique physically increases the width of the radiating aperture, resulting in larger broadside gain. The width of the active region of the Model 524 and 527/527B is 1.5 wavelengths.

Individual radiators resemble a saw-tooth and are the electrical equivalent of "fattened" radiators with low Q. The reduction in Q increases the power handling capability and lengthens the effective active region, resulting in greater radiation efficiency.

KEY FEATURES

> Reliable communications on long-range circuits
> High power gain - over 18 dBi
> Wide frequency bandwidth 4 to 30 MHz
> Small land area - replaces rhombic twice the size
, Low take-off angle
> Model 524 Antenna Azimuth and Elevation Patterns
(Azimuth pattern at elevation angle of beam maximum, gain in dBi)

NOTE: Front support poles, normally class 2, 3, or 4 Douglas Fir, are required but not supplied by TCI. Check with TCl for specific requirements.
> Model 527B Antenna Azimuth and Elevation Patterns
(Azimuth pattern at elevation angle of beam maximum, gain in dBi)

NOTE: Front support poles, normally class 2, 3, or 4 Douglas Fir, are required but not supplied by TCI. Check with TCI for specific requirements.

Model 524 Antenna

The Model 524 is a single-curtain antenna three half-wavelengths wide, resulting in a dramatic increase in the broadside radiating aperture. The antenna gain is 15.5 dBi minimum, 16 dBi nominal and the azimuth beamwidth is 38°. On a long point-to-point circuit where wide azimuth coverage is not required, this antenna provides reliable communications with a single antenna curtain.

Model 527B Antenna

The 527B consists of two standard transposed dipole arrays, which are horizontally polarized and stacked in the vertical plane. The increase in vertical aperture decreases the H-plane beamwidth, resulting in antenna gain of 15 dBi while retaining an azimuth beamwidth of 64°. This antenna is extremely useful in applications where high gain, low take-off angles are required over a broad azimuth.

Model 527 Antenna

The 527 consists of two 524 curtains stacked vertically. On long-range, point-to-point circuits, where extremely high power gain and low take-off angle are required, the 527 will provide highly reliable communications. Performance will exceed that of a rhombic more than twice the size. The 527 provides antenna gain in excess of 18 dBi and a take-off angle of 12°.

Model 527 Antenna Azimuth and Elevation Patterns
(Azimuth pattern at elevation angle of beam maximum, gain in dBi)

Horizontal Polarization

It is well known that vertically polarized antennas experience undesirable ground losses without the use of sizable ground screens. Because the TCI super high gain antennas are horizontally polarized, ground losses are negligible and the maximum possible antenna gain is actually achieved without ground screens.

Durable Materials

All TCl antennas share the same high-quality, exhaustively tested components and materials.
All radiators, feedlines, and catenaries are Alumoweld, a wire composed of a highstrength steel core and a highly conductive, corrosion-resistant, welded coating of aluminum. All feedline and radiator tip insulators are made of high-strength glazed alumina, a material with an extremely low loss tangent (.001), which is virtually impervious to the effects of ultraviolet radiation, dirt, and salt spray.

Fixed-station log-periodic antennas traditionally have used fiberglass catenary and drop rod assemblies for their excellent dielectric and tensile strength properties. However, field experience has shown that minute, difficult-to-detect flaws in the material, RF burning and small nicks incurred during installation may result in catastrophic structural failure later on. This, along with deterioration when stored for long periods of time at high temperature and humidity, indicate an opportunity for improvement. As a result, TCl antennas use Alumoweld catenaries, broken up by fail-safe insulators, which are not subject to the failure modes experienced by fiberglass.

The TCI towers employ either 6061-T6 aluminum or galvanized steel. All bolts and nuts are of the same material as the tower, thereby eliminating all dissimilar metal contacts.

Model 524 Specifications

The Model 524 is a single curtain antenna utilizing the clamped mode fattened radiator design. The antenna is three half wavelengths wide resulting in a dramatic increase in the broadside radiating aperture. The antenna gain is 15.5 dBi minimum, 16 dBi nominal and the azimuth beamwidth is 38°. On a long point-to-point circuit where wide azimuth coverage is not required this antenna provides reliable communications with a single antenna curtain.

* Measured from extreme guy points

Gain and Pattern Data						TOA	UHPP
Frequency	Gain	LHPP	TOA	270			
f_{\circ}	15.5 dBi	15°	190	42°			
15 MHz	16.0 dBi	90	170	29°			
21 MHz	16.5 dBi	90	15°	27°			
25 MHz	16.5 dBi	$8 \circ$	14°	24°			
30 MHz	16.5 dBi	80	23°				

Power and Impedance Data

Model Number	Input Impedance	Power (Avg./PEP)	Connector
$524-$ N-02	50 ohm	Receive	Type N Female
$524-$ N-03	50 ohm	$10 / 50 \mathrm{~kW}$	$1-5 / 8^{\prime \prime}$ ElA Female
$524-$ N-06	50 ohm	$1 / 2 \mathrm{~kW}$	Type N Female

Model 527B Specifications

The Model 527B antenna consists of two standard transposed dipole arrays which are horizontally polarized and stacked in the vertical plane. The increase in ver tical aperture decreases the H -plane beamwidth resulting in antenna gain of 15 dBi while retaining an azimuth beamwidth of 64°. This antenna is extremely useful in applications where high gain, low take-off angles are required over a broad azimuth.

Polarization	Horizontal
VSWR	$2.0: 1$ maximum
Azimuth Beamwidth	64° nominal
Front-to-Back Ratio \& Side Lobe Level	13 dB nominal
Environmental Performance	Designed in accordance with EIA Specification RS- 222 C for loading of $225 \mathrm{~km} / \mathrm{h}(140 \mathrm{mi} / \mathrm{h})$ wind, no ice, $145 \mathrm{~km} / \mathrm{h}(90 \mathrm{mi} / \mathrm{h})$ wind, $12 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ radial ice Optional: $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{mi} / \mathrm{h})$ wind only, no ice

Size							
Model	Frequency Range	Height		Length*		Width*	
Number		ft	m	ft	m	ft	m
527B-2-N	$4-30 \mathrm{MHz}$	220	67.2	487	148.4	600	183
527B-8-N	6.2-30 MHz	151	46	330	101	410	125

* Measured from extreme guy points

Gain and Pattern Data							
Frequency	Gain	LHPP	TOA	UHPP			
4 MHz	14.5 dBii	11°	22°	35°			
6.2 MHz	14.7 dBi	10°	20°	34°			
12 MHz	15.0 dBi	8°	170°	26°			
25 MHz	15.2 dBi	6°	14°	21°			
30 MHz	15.2 dBi	6°	13°	20°			

Power and Impedance Data			
Model Number	Input Impedance	Power (Avg./PEP)	Connector
527B-N-02	50 ohm	Receive	Type N Female
527B-N-03	50 ohm	$10 / 50 \mathrm{~kW}$	$1-5 / 8$ " EIA Female
527B-N-06	50 ohm	$1 / 2 \mathrm{~kW}$	Type N Female

Model 527 Specifications

The Model 527 consists of two 524 curtains stacked vertically. On long range point-to-point circuits where extremely high power gain and low takeoff angle are required, the 527 will provide highly reliable communications. Performance will exceed that of a rhombic more than twice the size. The 527 provides antenna gain in excess of 18 dBi and at a take-off angle of 12°.

Polarization	Horizontal
VSWR	$2.0: 1$ maximum
Azimuth Beamwidth	380 nominal
Front-to-Back Ratio \& Side Lobe Level	13 dB nominal
	Designed in accordance with EIA Specification RS-222C for loading of 225 $\mathrm{~km} / \mathrm{h}(140 \mathrm{mi} / \mathrm{h})$ wind, no ice, $145 \mathrm{~km} / \mathrm{h}$ $(90 \mathrm{mi} / \mathrm{h})$ wind, $12 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ radial ice Optional: $160 \mathrm{~km} / \mathrm{h}(100 \mathrm{mi} / \mathrm{h})$ wind only, no ice
Environmental Performance	

Size							
Model Number	Frequency Range	Height		Length*		Width*	
		ft	m	ft	m	ft	m
527-2-N	$4-30 \mathrm{MHz}$	221	67.5	598	182.2	781	238.1
527-3-N	$6.2-30 \mathrm{MHz}$	170	51.8	388	118.3	545	166
527-6-N	5.95-26.1 MHz	184	56	442	135	610	183

Gain and Pattern Data				
Frequency	Gain	LHPP	TOA	UHPP
f_{\circ}	16.5 dBii	10°	20°	30°
12 MHz	17.5 dBi	9°	18°	28°
25 MHz	18.2 dBi	6°	130°	20°
30 MHz	18.2 dBi	6°	12°	19°

Power and Impedance Data Model NumberInput Impedance	Power (Avg./ PEP)	Connector	
$527-\mathrm{N}-02$	50 ohm	Receive	Type N Female
$527-\mathrm{N}-06$	50 ohm	$1 / 2 \mathrm{~kW}$	Type N Female
$527-\mathrm{N}-28$	50 ohm	$5 / 10 \mathrm{~kW}$	$7 / 8$ EIA Female
$527-2-100$	300 ohm Balanced	100 kW AM $(150 \mathrm{~kW} \mathrm{Avg/}$ 400 kW Peak)	Balanced Terminals
$527-6-100$	300 ohm Balanced	100 kW AM $(150 \mathrm{~kW} \mathrm{Avg/}$ $400 \mathrm{~kW} \mathrm{Peak)}$	Balanced Terminals
$527-6-250$	300 ohm Balanced	250 kW AM $(375 \mathrm{~kW} \mathrm{Avg/}$ $1,000 \mathrm{~kW}$ Peak)	Balanced Terminals

Company Proprietary
Data and specifications subject to change without notification.
Not for distribution without prior permission from TCI .
© 2014-2023 - All Rights Reserved

TCI INTERNATIONAL, INC., 3541 Gateway Blvd., Fremont, CA 94538-6585 USA

